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Design Of Experiments
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Design Of Experiments

Where did | get the theory:

D. C. Mont gomery fiDesign and Anal ysW®)s

D. L. Massart et. al . AHandbook of

AC h atlstlcal Description of

AC h Nor mal Distributionbo

AC h Introduction To Hypothesis Test
AC h me | mportant Hypothesis Test o
AC h alysis of Varianceo

AC h ntrol Chartso

AC h raight Line Regression and Cal i
AC h |l ntroduction To Experi ment al D
AC h factorial Designo

AC h ractional Factori al Desi gno

AC h wlet i Desi gno

AC h Mi xture Designo

AC h Ot her Optimization Methods?o
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But €é most books on (applied) Design




The ideas behind Experimental Designs



Design Of Experiments - Definitions

Experiment:
AA test or seri@eosadchanesdresmademnotheh i ¢ h
input variables of a process or system so that we may observe and
identify the reasons for changes that may be observed in the output
respofse. 0

Design:
firhe art or process of deciding how something will look, work, e® c . 0

Motivation:
AThe statisticiands aim in designing
desired degree of reliability at the lowest possible cost under the existing
budgetary, administrative, and physical limitations within which the work
must be conducted. In other words, the aim s efficiency - the most
information (smallest error) for the money. ©

dDef inition, |ike many of the ideas in this coul
and Analysis of Expe®Mi mentso Wiley (2005, 6

Definition taken from Oxford Advanced Learner 0:¢
OWi Il Il'iam E. Deming ASome theory of samplingd Do\



Leading example - Making the best apple juice (optimization)

Sensors

Qs e

Material Technician




Design Of Experiments - Objectives

Strategy of experimentation is the most important job of the experiment

a) Does x influence y, and if so, how? R
(does pH influence apple juice quality?)

b) Which inputs x are the most influential on the output y R
(which is more important pH, Sugar or a combination?)

c) Howtosetxbs t o minimiye variability iTh/R
(what settings for pH and Sugar give good apple juice for everybody?)

d) Howtosetx0s s o t hatzbisnylisiminenizede o f
(what settings for pH and Sugar give good apple juice for all technicians?)




Variables - Rational, ordinal or nominal

A

AOr di nal scale; e.g. Avery poor o0, Apoor
Acalled ranked variables
Adistinct graduation, but scale-distance defined

ANomi nal scale; e.g. fgreeno, fredo, fy
Aqualitative of categorical variables or attributes
Arequire some speci al Atrickso in sta

pH
AN =

S & et
Material Production Technician Periphery



Design Of Experiments - Objectives

Formulate the right question (Hypothesis)
Collect data that can/will answer your question

Get maximum information from a series of experiments
Get the most reliable answer from your measurements
Answer the question from as few measurements as possible

Just make (or buy!) some juices Two level full factorial design




Design Of Experiments - Different approaches 10

A Best guess
(often works well due to good
insight on the problem by
experimenter!)

A One factor at atime
(Apseudo scient.

A Factorial design
(e.g. 22 to reveal interactions)




Example - Two factor factorial design (22)

A Five sensors score product (apple juice) for each design point
A average is product score

Sensors

(donc“)=t | i ke) E :

A Design is replicated twice: 22 x 2 = 4 x 2 = 8 experiments

A Design




Example - Data

Product score of 5 sensors A Mean
6.5 5.0 55 6.0 6.5
6.0 55 6.0 6.0 6.5
7.0 7.5 7.0 7.0 7.0
9.0 8.5 9.0 9.5 9.0
4.5 5.0 5.0 6.0 4.5
6.0 55 6.0 6.0 6.0
7.0 7.0 7.5 7.5 7.0
7.5 7.5 8.0 9.5 8.0




Effects - Two factor factorial design (22) 13

A Main effects
Sugar and pH

A Interaction effect
Sugar x pH




Effects - Two factor factorial design (22) 14

Important in interpretation are magnitude and direction of the effects:
A sweet juice has a clear preference

A alow pH leads to a higher score

A the interaction Sugar-pH is weak




Effects - Two factor factorial design (22)

Done




Design Of Experiments - Different approaches 16

A Best guess
good starting values,
but fHareas unvi s

unknown and usually inefficient!

One factor at atime
inefficient use of the data
(A2 small factor

Factorial design
maximum use of the data,

since all observations are used

for all the main and interaction
effects! And, the trend in the
surface gives an indication for
Aareas unvi sited




Example - Data

Product score of 5 sensors A Mean
6.5 5.0 55 6.0 6.5

6.0 5.5 6.0 6.0 6.5
7.0 7.5 7.0 7.0 7.0
9.0 8.5 9.0 9.5 9.0
4.5 5.0 5.0 6.0 4.5
6.0 5.5 6.0 6.0 6.0
7.0 7.0 7.5 7.5 7.0
7.5 7.5 8.0 9.5 8.0




Effects - Three factor factorial design (23)

A Main effect Apple/Material 23 = 8 experiments (still!)

A Three Main effects (Sugar, pH, Material)
A Three second order interaction (S x pH, S x M, pH x M)
A One third order interaction (S x pH x M)




Design Of Experiments - Different approaches

A One factor at atime
(Ahpseudo scienti

A Factorial design
(e.g. 22 to reveal interactions)




Factorial design - Relative efficiency

A Factorial design
4 observations
all effects estimated
as average over two

25=32 A 32x3=96

Relative efficiency

3.5

3

Eg. 22 A 6/4=15 2.5

2

A One factor at atime 1.5

2 3 4 5 6
design factors

Needs 6 observations
to get the same
information

4 8 16 32 64
N observations




Effects - Four factor fractional factorial design (241)

A Number of design parameters large A Fractional Factorial Designs

A Main effect production % x 24 = 8 experiments (still!)
Full information on the main effects, partial information on the interactions




Effects - Four factor fractional factorial design (241) 22

If you need more detail, complete the factorial design

2414 241=24 A 23423=24 A 8+8=16




Confounding - four factor fractional factorial design

But, you | oose something by reducing tIl
A Main effects and interaction effects will be confounded

A Confounding means: we can not separate some effects/interactions




Confounding - four factor fractional factorial design

For the example:
AWe have 4 factors (Sugar, pH, Material and Production)

AThere are 4 blocks (2x Material plus 2x Production)
Aln this case: block effects and threefold interactions are confounded
AE.g. Material (apple) effect and Sugar x pH x Material effect are confounded




Confounding - four factor fractional factorial design

AFour factors makes for a complex model (4 main effects, 6 second order
interactions, 4 third order interactions, 1 fourth order interaction)

AWhen reducing a full design, usually the assumption is made that high-order
interactions are unimportant (e.g. Sugar x pH x Material x Production)

AWhen reducing the design you have to c




Three basics - , randomization and blocking

Signal-to-noise ratio
for design replicates

Can we see the difference between
uncertainty / error and treatment / effect

(less; high)
: V.
(more; low)




Three basics - , randomization and blocking

A Quality of the response

A Fivesensors 6scored a product for each
A average is product score
A repeated measurements

A Even if not explicitly used in the statistical analysis of a design, it is of utmost
importance to have an impression of uncertainty in the response!!!

A Laboratory info, analysis replicates,



Three basics - , randomization and blocking

Signal-to-noise ratio ANalysis Of VAriance / ANOVA
for design replicates ols an effect ¢

low

less
Subtle difference in definition of erro
kni ght errant) rather than oO6incorrecto.
based on common part (e.g. average) and unique part (e.g. error).

Design point has experimental error = statistical error = a random variable.



Three basics - , randomization and blocking

Center point replicates are a good indication of the reproducibility of design points,
plus they can give a (cheap) indication of curvature in the response.

Total:
8+3=11
8+5=13

Single replicate design; migrate the uncertainty of the center point to the corners



Three basics - Replication, and blocking

Underlying statistical methods require that the observations (or errors) are
independent distributed random variables. Randomization of e.g. starting
material and run-order of the design points (usually) makes this assumption valid.




Three basics - Replication, and blocking

All sorts of effects can influence a series of observation:
Alearning by experience: reducing the uncertainty
Awear-and-tear in equipment: increasing the uncertainty

Aa change in lab-assistants: a jump in uncertainty

Randomi zation Areshuffleso the obser
between design-andrun-or der . | t Aaverages outo
extraneous factors.”

Less More Less More Center
Low Low High High points

~A— A A A A
iShake 10 1r%l.n.u.t°e.s.5.°°°°°°°°°°|

time = order

random order
—_— ed e e e d
Less More Less More Center
Low Low High High points

) Randomization is also the justification/motivation behind the so-called F-test, used excessively later in this course.



Three basics - Replication, randomization and

So-called Blocking is capable to eliminate undesired/nuisance factors,
by asking a different question

Bl ocking can al so be a Onecessary
E.g. assume we donoOt have enough




Three basics - Replication, randomization and

So-called Blocking is capable to eliminate undesired/nuisance factors,
by asking a different question

Al mprove signal




Three basics - Replication, randomization and blocking

There is alink between the three basics!
E.g. we want to perform 30 experiments (replicates), but we can only do 10 runs
from one batch of raw material (a typical nuisance factor).

Block effect {

Uncertainty




Effects - Four factor fractional factorial design (241)

AMondayo+ AFridayo extra Abl ocl




Alternative designs 36

Box-Behnken design Central Composite design

E.g. If extreme points are physically impossible

E.g. extension of an 6ol dbé desi
surface around an optimum

MANY more flavors found in textbooks.




Design Of Experiments - An iterative process for optimization

G

(9)

Sensors




Design Of Experiments - An iterative process for optimization

Iéizl Factorial screening experiment

Sensors \




Design Of Experiments - An iterative process for optimization

Iéizl Factorial screening experiment

posite design
ptimization

Sensors




Design Of Experiments - An iterative process

Recognition and definition of the problem &

Choice of factors, levels and ranges

Selection of the response variable

Choice of experimental design

Performing the experiment

Sensors

Statistical analysis of the data

Conclusions and recommendations




Design Of Experiments T The paradox

The best time to design an experiment is after it is finished,
the worst time is at the beginning

This paradox is the motivation for an iterative approach.

As a rule of thumb: 20/25% of the effort/budget
should be invested in a first design (a screening design).

"G. E. P. Box, W. G. Hunt er and J.S. Hunt er NnStati st



Design Of Experiments T Planning

A Systematic Approach to Planning for a
Designed Industrial Experiment

David E. Coleman Douglas C. Montgomery
Alcoa Laboratories Industrial Engineering Department
Alcoa Center, PA 15069 Arizona State University

Tempe, AZ 85287

Design of experiments and analysis of data from designed experimenms are well-established
methodologies in which statisticians are formally trained. Another criical and rarely tanght
skill 15 the planning that precedes designing an experiment. This article sugpests a set of wols
for presenting generic technical issues and experimental features found in industral experi-
ments. These tools are predesign experiment guide sheets wsystematize the planning process
and 1o produce organized written documentation, They also help experimenters discuss com-
plex trade-offs between practical limitations and statistical preferences in the experiment. A
case study invalving the {computer numerical control) CNC-machining of jet engine impellers
s included.

KEY WORDS: Industral experimental design; Measurement error; Muisance foetors; Sta-
tistical consulting.

1. INTRODUCTION periment, or a step in sequential experimentation on
an existing product/process, off-line or on-line. Many

1.1 A Consulting Scenario of the issues addressed, however, also apply to new

TECHNOMETRICS, FEBRUARY 1993, VOL. 35, NO. 1



Statistical inference and testing



Some basic notions i Sample and population

NA sample from

Samples: 10 pH-measurements
taken from flask 1

Population: all the possible pH-
values to be found in flask 1

We assume continuous
distribution in population (not
always the case; e.g. pH in
European rivers)




Some basic notions i Expectation and population parameters

Expected value A sample statistic for n observation

Mean Locality

Variance Spread

Eg: Normal distribution N(m,s,)
m S

<€ > 68%

<€ > 95% Observations
<€ 2 100%

Notice: mand s are
population constants




Some basic notions i Expectation and population parameters

h
Relative fraquency

oz2f

__

[ 1 . . [ 1 .

1 00O 2000 3000 ppm F

Fig. 2.1. Relative frequency distribution ot the data of Table 2.1.

Eg: Normal distribution N(m,s,)

— T o—

) > 68%
Notice: mand s are

> 95% Observations
population constants < > 100%




Some basic notions i Expectation and population parameters

Cumulative relative

3]
I freguency

05F

1000 2000 3000

Fig. 2.2. Cumulative relative frequency distribution of the data off

Notice: mand s are
population constants

ppm F
“able 2.1,

<€

Eg

Normal distributio+ N(m,s,)
m ~S
<& > 68%
> 95%

> 100%

The integral

Observations




Some basic notions 48

n, (n-1) degrees of freedom, population = Greek, sample = Latin




Some basic notions i Sample and population

4.90

5.06

5.05

5.17

5.06

4.94

5.04

4.90

5.00

4.7

4.8

4.9

5.1

5.2

5.3




Some basic notions i Critical t-values

(a) Uis users choice
(b) Increasing for U

. 1 e
(c) Decreasing for n I
° Critical point. For exam,p_lg:
(d) n large (or u known) £ogs leaves .025 probabilty
in the tail.
t Critical Points (@) () :
d',f- l x5 f (K11 ' (1 t 0nas l nin [ ans [ nazn r oo , DO
((p) 1 1.00 308 631 127 318 63.7 127 318 637

"/ 2 82 1.89 292 430 6.96 992 141 223 316

3 76 164 235 318 454 5.84 745 102 129

& .74 153 213 298 475 4.60 560 7.17  8.61

5 73 148 202 257 336 4.03 4.77 589  6.87

6 .72 1.44 194 245 3.14 3.71 432 521 5.96

] 7 21 141 189 236 3.00 3.50 4.03 479  5.41

F'g 71 1.40 186 281 280 3.36 3.83 450  5.04

g .70 138 1.83 226 2.82 3.25 3.69 430 478

fx)

30 68 1.31 170 2.04 246 2.75 3.03 339  3.65
40 .68 130 168 2.02 2.42 2.70 287 331 3.55
60 .68 1.30 167 2.00 239 2,66 292 323  3.46
120 68 129 1.66 1.98 2.36 2.62 2.86  3.16  3.37
—r ki x 67 1.28 164 196 233 2.58 2.81 309 3.29
-3 -2 1 0 1 2 3 box (d) =Za = Zyo = Zos = Zozs = Zowo = Zoos = Zoozs — Zooio — Z.0005

Fig. 3.8. The s-distribution for 3 degrees of freedom compared with the z-distribution.

95% confidence interval/level; n large or s, givent,; =z, =1.96



Some basic notions i Sample statistics (= descriptors in numbers)

5.06

4.94 Assumption: Normal distribution N(X,,S,)
5.04

4.90 Xpar NS,
5.00
5.00 \




Some basic notions i Sample statistics (= descriptors in numbers) 52

. N

(c)

Fig. 3.2. Normal distribution (a) and cumulative normal distribution (b). Fig. 3.1. Non-normal distributions: (a) positive skewness, (b) negative skewness, (c) negative kurtosis.

x




Errors i Random versus systematic

bias m
(accuracy)

repeatability
(precision)

Increase sample size

reproducibility
(precision)

(¥ (3,

D))~




Errors i Random versus systematic

Error: difference between true and observed value

e(l) = x(1) - m

e(l) = (X(l) - Xbar) + (Xbar B n’()
Truevaluem (| SO) : fiThe value which — —
characterizes a quantity perfectly defined in - random systematic
the conditions which exist at the moment when . .. .
that quantity is observed (or the subject of a - Imprecision bias
determination). It is an ideal value which could - precision accuracy
be arrived at only if all causes of measurement A
error were eliminated and the population was

infiniteo.

repeatability  reproducibility

AAccuracy I s the concept, bi as




Design Of Experiments - Comparing two samples

Two Otreat ment so 4.94 5.19
e.g. make two pH-buffers with 504 517
two different stock solutions
) 4.90 5.16
or replicates

5.00 5.10
5.00 5.17

pH 1 lllllllllll ‘I‘II . ~ lllllllll ‘ lllllllllllll

pH 2 samsmssmanas @ rrrnnnnnnnns XY XL | | 7 TLLLLrrnx

4.7 4.8 4.9 5 5.1 5.2 5.3
pH



Hypothesis testing - Some basic definitions

Expected value A sample statistic for n observation

Mean Locality

Variance Spread

Hypothesis testing (also significance testing)



Hypothesis testing - Some basic definitions

4.90 5.10
5.06 5.07

pH 1 llllllllllll ’I’II ‘ ~ lllllllll ’ lllllllllllll
5.05 5.21
517 401 pH 2 tassssssnnunas @ rrrnnnnnnnns XY XL | | ] T
5.06 5.14

4.7 4.8 4.9 5 5.1 5.2 5.3

4.94 5.19 pH
5.04 5.17
4.90 5.16
5.00 5.10
5.00 5.17

Assuming the variance in flask 1 and 2 is the same:

(n,-1).s%, + (n,-1).s2,  0.0630 + 0.0666
SZ = — = 00072
pooled
(n-1) + (ny-1) 9+9
W

9 degrees-of-freedom (df) in estimating
each of the standard deviations




Hypothesis testing T Pooled standard deviation

Assuming the variance in flask 1 and 2 is the same:

(n;-1).s%; + (n,-1).s2, 0.0630 + 0.0666
2 = = = 0.0072
pooled
(1) + (npl) 9+9
W

9 degrees-of-freedom (df) in estimating
each of the standard deviations

Assumption:

- homogeneity of the variance or homoscedasticity
- no hetroscedasticity

Gain:
- more degree of freedom, better S/N ratio



Design Of Experiments - Comparing two samples

o1 Tprz |
4.90 5.10
5.06 5.07
5.05 521
5.17 491
5.06 5.14
4.94 5.19
5.04 5.17
4.90 5.16
5.00 5.10
5.00 5.17

Models




Analysis of variance - Models and hypothesis 60

Overall
mean




Analysis of variance - Sum-of-Squares

Breaking up the total Sum-of-Squares in its contributions

-~ A ~ SS;.; (= error)

r N\

P A - SSgor (= within-error)
IIIIIIIII ‘ ’IIII‘II“IIIIIIIII‘IIIIIIIIIIIII
-------------------------- CEX IR © T T REEERLEEY

tv—tvj SStcament (= Detween-error)




Analysis of variance - Variance estimate from errors / replicates 62

Pooled estimate of variance s?
with (N-a) degrees of freedom
(a.k.a. Mean Squares of the Error)




Analysis of variance - Variance estimate from treatment

Variance estimate s2 from treatment averages
......... .‘...‘........“.:...:....‘.............. Wlth (a_l) degrees Of freedom




Analysis of variance - On degrees of freedom

Breaking up the total Sum-of-Squares in its contributions

' N
A
4 . Y
' 48 N\
IIIIIIIII ‘I’IIII.II“IIIIIIIII‘IIIIIIIIIIIII
.......................... 'YX XL . I

AA real horror-story in many statistical books and papers 1 f 1
AConceptually and at the user level it is simple
ABut in mathematical statistics it is a complicated,

but highly important issue




Analysis of variance - The test statistic 65
A

rr L — ~N\
IIIIIIIII ‘I’IIII.II“IIIIIIIII‘IIIIIIIIIIIII
----------- .---------------.-.u-“..----uu.
If there is no difference in the treatment means 1 f 1

we have two estimates of the model variance s2 é

€ and from t hese
we derive the test statistic (F-test)

The answer is derived from

comparing experimental with
tabulated F-values

0The qu




Analysis of variance - The test statistic, less formal

Total Sum-of-Squares is SS due to treatment plus remaining SS (error)

Mean Square (MS) - Sum-of-Squares divided by degrees-of-freedom - can be
considered a variance

F is the variance ration of what is explained by the design settings/factors and what
Is unexplained/population variation (statistical error)

Large F: strong evidence of a treatment effect




Example i Comparing two samples

4.94 5.19
5.04 5.17
4.90 5.16
5.00 5.10
5.00 5.17




Example - The test statistic 68

A
' A N\
' 48 N
lllllllll ‘ ‘IIII.II”IIIIIIIII‘IIIIIIIIIIIII ; ~
lllllllllll .IIIIIIIIIIIIIII.I.II“..IIIIIIIII O H%t to Compare the tWO means:

.

Cl as sHycepedted ata =5% | e

0 Fdigtribution lookup table:

Better:

Even better: OAssuming these wo trealt
0

numbe

t
finding these particular 2 x 1




nalysis of variance i Critical F-values

(a) SSTreatment/ (a' 1)

FO =
(b)

(c) Uis users choice
(d) Increasing for U
(e) Decreasing for N

SSError/(N'a)

masLe VI F Critjcal Points

Critical point. For example:
F o5 leaves 5% probability in the tail.

F

( Al ) bEGREES OF FREEDOM FOR NUMERATOR

1 2 3 4 5 6 8 10 20 40
1 Dy 5.83 7.50 8.20 858 882 898 919 932 958 971
(C) F.o 899 495 538 858 572 BER 594 HOZ B17 @bs
Eo 161 2000 216 225 @ 230 234 239 242 248 251
2 Fas (d957 300 315 323 3.28 331 335 3.38 343 345
Fao 953 9.00 9.16 9.24 9.29 933 937 939 944 947
Ees | 785 1900 182 192 193 193 194 194 194 195
For | 985 990 992 992 993 99.3 994 994 994 995
For,¥998 999 999 999 999 999 999 999 999 999
I(e) 3 U 2.02 @228 236 239 2Mm 242 244 244 246 247
Fw _ 554 546 530 544 ' &3] 528 595 593 518 515
Fes 000 95550 9980 a1p= id4g 894 885 879 866 859
B,y 841 308 295 287 282 27.9 27.5 272 267
Fos: 187 149 9431 437 135 135 181 129 126 125
o|? Fas 1.81  2.00 2.05 2.06 2.08 208 2.08 2.08
6| F, 454 432 418 411 401 895 3wz  3.84
5| Fo 771 694 659 639 6.16 6.04 596 5.80
§| Fs 212 180 187 160 5 152" 148 445 140
o| ' Fay 741 8tz 85 B854 5l 505 49.0 48.1  46.1
§"5 Flos 1.69 1.85 1.88 1.89 1.89 1.8 1.8 1.89  1.88
& Ba 4.06 378 362 352 5 340 334 330 3.21
A 661 579 541 518 5.0 495 4.82 474 456
& F, 68 133 gpa 4 11y 10.7 103 101 955
é Fage 47:2 870 332 311 298 288 276 269 254
6 Fu 182 146 178 179 179 178 197 137 1.76
TR 378 346 329 3dp 3 di 3.05 298 294 2.84
o Fo 890 7504 S48 TAbTE 40 428 415 406 3.87
g Fee 187 108 978 815 845 847 810 7.87 7.40
®  Fg 3855 270 @237 219 203 200 190 184 17.1
8 7 By 157 iFe: 473 e A 171, %70, 169 167
(b) Fy 3.59 326 3.07 296 288 2:83 295 0,70 259
Eis 559 474 435 412 397 387 373 364 3aa
Foy 12.2 9.55 845 7.85 7.46 719 684 6.62 6.16
Frooy. 208 27 w88 wzal 162 15,5 146 141 129




Analysis of variance - Computer ANOVA

A typical ANalysis Of VAriance software output (Matlab in this case):

J Figure No. 1: One-way ANOYA :

File Edit View Insert Tools Window Help

ANOVA Table
Source SS df MS F Prob>F
Columns 0.0627 1 0.0627 8.71 0.0085
Error 0.12957 18 0.0072

Total 0.19227 19

@ () (o (d) (€)

(a) Sum-of-Squares Columns A Treatment
(b) degrees-of-freedom  (a-1), (N-a) and (N-1)
(c) mean squares

(d) F-statistic 0.0627/0.0072

(e) probability 0.85%



Permutation testing i A different view on probability

o1 Tprz |
4.90 5.10
5.06 5.07
5.05 521
5.17 491
5.06 5.14
4.94 5.19
5.04 5.17
4.90 5.16
5.00 5.10
5.00 5.17

What if pH1 = pH2?

Then we could randomly assign 10 measurements

out of the total 20 to flask 1 and the rest to flask 2.

20 20!

= —— = 184756 possibilities to do so
10110!

10




Permutation testing i A different view on probability

Re-sample

True data
4.90 5.10
5.06 5.07
5.05 5.21
5.17 491
5.06 514
4.94 5.19
5.04 5.17
4.90 5.16
5.00 5.10
5.00 5.17

4.90
5.10
5.06
5.07
5.05
5.21
5.17
491
5.06
5.14
4.94
5.19
5.04
5.17
4.90
5.16
5.00
5.10
5.00
5.17

-

4.90
5.07
5.17
491
5.14
4.94
5.04
5.16
5.00
5.17

5.10
5.06
5.05
5.21
5.06
5.19
5.17
4.90
5.10
5.00

O Vi

5.0571 5.08

-0.03

rt uall

f

s k




Permutation testing i A different view on probability

By random drawing only
0.53% out of 1500 trails
has a difference smaller
than the true value

Even better:
that pH, is not lower than
pH, the randomization
testing shows that the
probability of finding these
numbers is smaller than 1
percent! o6

Notice this a one sided test version of
our pH example!

® AS S UmMi

-0.15 fo.lo -0.05 0.00 0.05 0.10




Permutation testing i A different view on probability

Randomization testing is just one example of a big, new class of statistical tools:
Monte Carlo simulation, Bootstrapping, Jack-knifing, cross-validation, etc.

ABefore the computer 1500 test would be impossible

AThat is why people relayed on tables based on
Aassumptions on the distribution (often normal distribution)
Anumber of samples/observations/parameters (degrees of freedom)

AModern computer methods have some advantages
Ano direct assumption on the distribution (all is based on real data)
Ac r e alegmesdffreedomdé by running the experir

ABut there are (strong, and sometimes hard to understand) assumptions in most
computer-based methods as well; just different once!

ABut, computer time is cheap é



Permutation testing i A different view on probability

000 002 004 006 0.08 0.10 *0.12 0.14

0.4 0.8 1.2 1.6 2.0%

€ why not run th
trail 100 times to study the
distribution of the

probability.

O Assumi ngisthenat p
same as pH, the

randomization testing

shows that the probability

of finding these numbers

i's between 0.8 a

Notice this a two sided test version of
our pH example




Analysis of Variance / ANOVA



Example - Data

Product score of 5 sensors A Mean
6.5 5.0 55 6.0 6.5
6.0 55 6.0 6.0 6.5
7.0 7.5 7.0 7.0 7.0
9.0 8.5 9.0 9.5 9.0
4.5 5.0 5.0 6.0 4.5
6.0 55 6.0 6.0 6.0
7.0 7.0 7.5 7.5 7.0
7.5 7.5 8.0 9.5 8.0




Analysis of variance - Apple juice example 78

Effect
model

Hypothesis




Analysis of variance i 2 factor ANOVA

Breaking up the total Sum-of-Squares in its contributions revisited

OThe




Analysis of variance i 2 factor ANOVA 80

Intermezzo: Sum-of-Squares

@ontrasto total more sugar minus total less sugar




Analysis of variance i 2 factor ANOVA

J Figure Mo. 1: N-Way ANOYA

File Edit Wiew Insert Tools MWindow Help

Source S e o [ e Mean Sio. F Probh:E
5 s i f 32 0.0043
pH 2 1 2 8 0.0474
SxpH 0.G 1 0.5 2 0.2302
Error il 4 fles2 G
Total 11.5 7
(a) (b) (c) d) (e)
(a) Sum-of-Squares 2 main effects, one interaction

(b) degrees-of-freedom

(c) mean squares

(d) F-statistic

(e) probabilities 0.5, 4.7 and 23%

For the apple juice data set the main
their interaction is insignificant




Analysis of variance i 2 factor ANOVA with blocking

What happens if we expand the analysis to
603 factorso6 by -lwdnd?cki ng over appl e




Analysis of variance T 2 factor ANOVA with blocking

(a) Sum-of-Squares 2 main effects, one interaction, one blocking
(b) degrees-of-freedom

(c) mean squares

(d) F-statistic but ¢é

(e) probabilities 0.6, 4.0, 18 and 18%

€ the choice of blocking destroytest.t he r



